

Tetrahedron 59 (2003) 2877-2884

TETRAHEDRON

Substituent effects in the ring-chain tautomerism of 1,3-diaryl-2,3dihydro-1*H*-naphth[1,2-*e*][1,3]oxazines

István Szatmári, Tamás A. Martinek, László Lázár and Ferenc Fülöp*

Institute of Pharmaceutical Chemistry, University of Szeged, P.O. Box 121, H-6720 Szeged, Hungary

Received 25 October 2002; revised 3 February 2003; accepted 28 February 2003

Abstract—Condensation of Betti base analogue amino naphthols with substituted benzaldehydes led to 1,3-diaryl-2,3-dihydro-1*H*-naphth[1,2-*e*][1,3]oxazines (**3**–**9**) which proved to be three-component ($r^{1}-o-r^{2}$) tautomeric mixtures in CDCl₃ at 300 K. The electronic effects of the 3-aryl groups on the ratios of the ring-chain tautomeric forms at equilibrium could be described by the equation $\log K_X = \rho \sigma^+ + \log K_{X=H}$. The value of the intercept was found to be strongly influenced by the steric arrangement of the 1,3-diaryl substituents. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The structures and reactivities of numerous five- and sixmembered, saturated, *N*-unsubstituted 1,3-*X*,*N* heterocycles (X=O, S, NR) can be characterized by the ring-chain tautomeric equilibria of the 1,3-*X*,*N* heterocycles and the corresponding Schiff bases.¹ The oxazolidines and tetrahydro-1,3-oxazines are the saturated 1,3-*X*,*N* heterocycles whose ring-chain tautomerism has been studied most thoroughly.² The tautomeric character of 1,3-*O*,*N* heterocycles offers a great number of synthetic possibilities, e.g. they can be used as intermediates in the synthesis of *N*-substituted amino alcohols³ or nitrogen-bridged heterocyclic systems⁴ and they serve as aldehyde sources in carbon transfer reactions.⁵

For the tautomeric equilibria of oxazolidines and tetrahydro-1,3-oxazines bearing a substituted phenyl group at position 2, a Hammett-type linear correlation was found between the log K(K = [ring]/[chain]) values of the equilibria and the electronic character (σ^+) of the substituents Xon the 2-phenyl group (Eq. (1)), in both the liquid and the gas phase. The value of ρ in Eq. (1) proved to be characteristic of the ring system and dependent on temperature and the nature of the solvent:¹

$$\log K_{\rm X} = \rho \sigma^+ + \log K_{\rm X=H} \tag{1}$$

In contrast with the great number of studies on the dependence of the tautomeric equilibria of tetrahydro-1,3-oxazines on the aromatic substituent at position 2, less is known on the effects of such substituents at other positions.

The investigation of ring-chain tautomeric 2-aryltetrahydro-1,3-oxazines bearing a substituted phenyl group at position 4 or 6 showed that the substituent on the 4/6-phenyl group does not exert a significant influence on the parameters in Eq. (1). However, the presence of the aryl group itself stabilized the cyclic tautomer, more significantly at position 4 than at position $6.^6$ The influence of the electronic character of a substituted phenyl group attached at a position other than 2 was found to be more pronounced in the ringchain tautomeric equilibria of analogous 1,3,4-O,N,N or-1,3-N,N ring systems. For 4-aryl-2,2-dialkyl-substituted 1,3,4-oxadiazines, the electron-withdrawing groups on the 4-phenyl ring increased the proportions of the ring-closed tautomers.⁷ In the ring-chain equilibria of 1,2-diarylimidazolidines, the 2-aryl substituent dependence of which was observed to follow Eq. (1), electron-donating substituents on the 1-phenyl ring produced higher values of ρ .⁸

Our present aim was to study the substituent effects on the ring-chain tautomerism of naphthalene-condensed 1,3-oxazine derivatives bearing aryl groups at positions 2 and 4, with the aims of a refinement of the scope and limitations of application of Eq. (1) among six-membered 1,3-O,N heterocycles, and a quantitative characterization of the effects of both aryl substituents on the ring-chain equilibria.

2. Results and discussion

Betti's classical procedure, a Mannich-type aminoalkylation reaction of 2-naphthol,⁹ was applied to prepare the starting materials for the synthesis of the present target compounds. Condensation of 2-naphthol (1) and benzaldehyde or substituted benzaldehydes in the presence of ammonia,

Keywords: amino alcohols; oxazines; substituent effects; tautomerism.

^{*} Corresponding author. Tel.: +36-62-545564; fax: +36-62-545705; e-mail: fulop@pharma.szote.u-szeged.hu

 $Y = NO_2(m)$: (57%) **a**, Br(m): (47%) **b**, Cl(p): (53%) **c**, H: (56%) **d**, Me(p): (71%) **e**, OMe(p): (45%) **f**

Scheme 1.

and subsequent acidic hydrolysis, gave amino naphthols 3a-f in good yields (Scheme 1). The potential utility of the Mannich-type phenolic bases makes the aminoalkylation reaction of naphthol derivatives a subject of current chemical interest.¹⁰ For example, the enantiomers of Betti base 3d and its *N*-substituted derivatives were found to be potent chiral catalysts in additions of dialkylzincs to aldehydes,¹¹ and this contributed to the enhanced attention recently paid to the preparation of chiral *N*-substituted amino naphthol derivatives.¹²

Condensations of amino naphthols 3a-f with equivalent amounts of aromatic aldehydes resulted in naphthoxazine model compounds 4-9 as crystalline products (Scheme 2). The ¹H NMR spectra of 4-9 revealed that, in CDCl₃ solution at 300 K, the a-f members of each set of compounds 4-9 participated in three-component ringchain tautomeric equilibria containing C-3 epimeric naphthoxazines (**B** and **C**) besides the open tautomer (**A**). For the 3-(*p*-dimethylaminophenyl)-substituted derivatives (4g-9g), the tautomeric equilibria contained only one ring-closed form (**B**).

The intermediate of the Betti reaction was earlier presumed to have a ring-chain tautomeric character.¹³ By condensation of the Betti base with aromatic aldehydes, Smith and Cooper prepared 1-phenyl-3-aryl-2,3-dihydro-1*H*-

naphth[1,2-*e*][1,3]oxazines, and studied their ring-chain tautomeric equilibria by means of 60 MHz ¹H NMR.^{13a} They made the assumption that 1,3-diaryl groups prefer pseudoequatorial and therefore a *cis* arrangement in the *major* ring-closed tautomer. In contrast with this assumption, and the *cis* position of the diaryl groups found for the *major* ring-closed tautomers in both 2,4- and 2,6-diaryl-perhydro-1,3-oxazines,⁶ the NOESY spectra of **6a** unequivocally showed that the *major* ring forms in all tautomeric equilibria (**4**–**9**) contain the 1,3-diaryl substituents in the *trans* position (**B**).

To characterize the effects of the aryl substituent at position 1 on the tautomeric character of this ring system, 1-unsubstituted 3-aryl-2,3-dihydro-1*H*-naphth[1,2-*e*][1,3]oxazines (**11**) were also prepared from the readily available¹⁴ 1-aminomethyl-2-naphthol (**10**) and aromatic aldehydes. In CDCl₃ at 300 K, **11a**-g proved to participate in ring-chain tautomeric equilibria (Scheme 3).

The proportions of the chain (A) and diastereomeric ring forms (B and C) of the tautomeric equilibria of 4-9 and 11 (K_X) were determined by integration of the well-separated O-CHAr-N (ring) and N=CHAr (chain) proton singlets or doublets (Table 3) in the ¹H NMR spectra (Table 1).

In consequence of the very similar NMR spectroscopic

 $X = NO_2(p)$: **a**, Br(m): **b**, Cl(p): **c**, H: **d**, Me(p): **e**, OMe(p): **f**, NMe₂(p): **g**

2878

$$\begin{split} \mathsf{X} = \mathsf{NO}_2(p) \text{:} \ (72\%) \ \textbf{a}, \ \ \mathsf{Br}(m) \text{:} \ (83\%) \ \textbf{b}, \ \ \mathsf{Cl}(p) \text{:} \ (78\%) \ \textbf{c}, \ \ \mathsf{H} \text{:} \ (85\%) \ \textbf{d}, \ \ \mathsf{Me}(p) \text{:} \ (75\%) \ \textbf{e}, \\ \mathsf{OMe}(p) \text{:} \ (80\%) \ \textbf{f}, \ \ \mathsf{NMe}_2(p) \text{:} \ (77\%) \ \textbf{g} \end{split}$$

Scheme 3.

Table 1. Proportions (%) of the ring-closed tautomeric forms (B and C) in tautomeric equilibria for compounds 4-9 and 11 (CDCl₃, 300 K)

Compound	Х	σ^+	$ \begin{array}{c} 4 \\ (Y=mNO_2), \\ 0.73 \end{array} $		5 (Y= <i>m</i> Br), 0.405		6 (Y= <i>p</i> Cl), 0.114		7 (Y=H), 0		8 (Y= <i>p</i> Me), -0.311		9 (Y= <i>p</i> OMe), -0.778		11, _
			В	С	В	С	В	С	В	С	В	С	В	С	В
а	pNO_2	0.79	89.0	8.3	90.9	7.0	93.6	3.6	86.1	10.8	89.0	7.6	88.5	8.3	95.2
b	mBr	0.405	85.2	8.1	82.0	9.5	82.0	9.4	79.5	10.6	76.7	11.3	79.5	10.0	88.0
c	pCl	0.114	80.1	7.5	77.3	8.6	76.6	8.4	72.4	9.7	71.7	9.3	72.8	9.1	79.4
d	Ĥ	0	73.6	7.9	68.0	8.4	70.1	7.8	64.4	9.3	63.6	8.7	62.2	8.2	72.3
e	<i>p</i> Me	-0.311	63.6	6.3	57.3	6.6	60.0	6.1	52.6	7.7	50.9	6.8	53.2	6.6	58.3
f	<i>p</i> OMe	-0.778	47.7	3.7	42.1	5.4	43.5	4.6	37.8	5.9	36.6	4.7	38.1	5.4	45.4
g	pNMe ₂	-1.7	13.3	~ 0	9.8	~ 0	10.2	~ 0	10.4	~ 0	9.0	~ 0	8.6	~ 0	10.3

characteristics of 1,3-diaryl-2,3-dihydro-2*H*-naphth[1,2-*e*]-[1,3]oxazines **4**–**9**, determination of the relative configurations of the *major* and *minor* ring-closed tautomers was performed only for **6a**. Data on **6a**, **9g** and **11f** were chosen to illustrate the ¹H NMR spectra of the prepared tautomeric compounds (see Experimental). 1,2-Diaryl substituents did not change the sequence of the chemical shifts of the characteristic O-CHAr-N and N=CHAr protons. The configuration of the azomethine double bond was found to be *E*, according to the NOE interaction observed between the Nph-CHAr-N and N=CHAr protons.

When Eq. (1) was applied to the log K_X values, good linear correlations were obtained vs the Hammett-Brown

parameter σ^+ of the substituent X on the 3-phenyl group for 4–9 and 11 (Figure 1 and Table 2).

The linear regression analysis data in Table 2 show that, as is customary among 2-aryl-1,3-O,N heterocycles,^{1,2} the value of ρ is positive in each case, i.e. electron-withdrawing substituents on the 3-phenyl ring favour the ring-closed tautomer. While the value of ρ for 1-unsubstituted 3-aryl-2,3-dihydro-2H-naphth[1,2-e][1,3]oxazines (**11**: 0.81) is the same (within experimental error) as that for the parent 2-arylperhydro-1,3-oxazines (**12**: 0.76), the values of ρ for 1,3-diaryl-2,3-dihydro-2H-naphth[1,2-e][1,3]oxazines (**4**-**9**: 0.81–1.05) are somewhat higher. The *cis* or *trans* arrangement of the 1,3-diaryl substituents in the ring forms

Figure 1. Plots of log K_X (in CDCl₃) for 4B (\times), 4C (+), 5B (\blacksquare), 5C (\Box), 6B (\blacklozenge), 6C (\diamond), 7B (\blacktriangle), 7C (\triangle), 8B (\blacklozenge), 8C (\bigcirc), 9B (\times), 9C (-), 11B (\bigcirc) vs Hammett–Brown parameter σ^+ .

2879

 Table 2. Linear regression data on compounds 4–9, 11, 2-aryl-3,4,5,6-tetrahydro-2*H*-1,3-oxazines (12), 2-aryl-3,4-dihydro-2*H*-1,3-benzoxazines (13) and 2-aryl-4-phenyl-3,4,5,6-tetrahydro-2*H*-1,3-oxazines (14)

 $X = NO_2(p), NO_2(m), CI(m), CI(p), H, Me(p), OMe(p), NMe_2(p)$

Equilibrium	No. of points	Slope ^a (ρ)	Intercept ^a	Correlation coefficient	c ^b
4A ≓ 4B	7	0.93 (4)	0.70 (8)	0.995	0.85
4A≓4C	6	1.04 (2)	-0.33(2)	0.999	-0.18
5A ≕5 B	7	1.00 (8)	0.64 (15)	0.985	0.79
5A≓5C	6	1.01 (9)	-0.33(10)	0.985	-0.18
6A ≓6 B	7	0.96 (5)	0.62 (10)	0.993	0.77
6A ≓6 C	6	0.81 (8)	-0.42(10)	0.979	-0.27
7A ≓7 B	7	0.92 (6)	0.53 (13)	0.988	0.68
7A≓7C	6	0.98 (9)	-0.34(10)	0.983	-0.19
8A ≕8 B	7	0.95 (6)	0.49 (12)	0.989	0.64
8A ≓8 C	6	0.95 (5)	-0.42(6)	0.993	-0.27
9A ≕9 B	7	0.95 (6)	0.52 (11)	0.991	0.67
9A ≓ 9C	6	0.94 (8)	-0.40(9)	0.986	-0.25
11A≓11B	7	0.81 (4)	0.52 (8)	0.994	0.67
$12A \Rightarrow 12B^{c}$	7	0.74 (6)	-0.15(5)	0.984	_
13A⇒13B ^c	7	0.82 (4)	-0.66(3)	0.995	-0.51
14A⇒14B ^d	6	0.72 (2)	0.42 (5)	0.997	0.57
14A ≓ 14C ^d	6	0.99 (4)	-1.12 (8)	0.996	-0.97

^a Standard deviations are given in parentheses.

^b Relative ring stability constant: see the text.

^c Data from Ref. 2b

^d For compounds **14** (Ref. 6), tautomeric ratios were remeasured and the linear regression analysis was performed separately for the equilibria involving C-2 epimeric ring forms.

of 1,3-diaryl-2,3-dihydro-1*H*-naphth[1,2-*e*][1,3]oxazines does not seem to influence the value of ρ ; the plots for the equilibria containing C-2 epimeric ring forms of **4**–**9** (**B**–**A** and **C**–**A**) are practically parallel.

To characterize the effects of the substituents and the presence of an annelated ring on the stability of the ring forms, a substitution effect parameter (c_s) was calculated as the difference in the intercepts for the given naphthoxazine derivative (**4**–**9**, **11**) and the parent 2-arylperhydro-1,3-oxazine (**12**: log K_0 =-0.15): c_s =log $K_{X=H}$ -log K_0 . This kind of relative ring stability constant was introduced earlier for the saturated 2-aryl-1,3-O,N heterocycles bearing substituents at positions 4–6.^{1b,2b} A positive value of c_s means a more stable ring form relative to the corresponding parent 2-arylperhydro-1,3-O,N heterocycle.

While an annelated benzene ring considerably decreased the stability of the ring form of 2-arylperhydro-1,3-oxazine (13: $c_s = -0.66$),^{2b} an annelated naphthalene ring caused a dramatic increase in ring stability (11: $c_s = 0.67$). This increased stability of the ring form was observed for all

naphthoxazines having *trans* diaryl substituents (**4–9 B**: $c_s=0.63-0.85$), while the negative c_s values for the *cis* isomers of these compounds (**4–9 C**: $c_s=-0.18--0.27$) indicates that the stabilizing effect of the naphthalene ring is diminished by the unfavourable steric arrangement of the aryl substituents.

3. Conclusions

Some new Betti base analogue amino naphthols were obtained by the Mannich-type aminoalkylation of 2-naphthol. The reactions of substituted amino naphthols and substituted benzaldehydes led to 1,3-diaryl-2,3-dihydro-1*H*-naphth[1,2-e][1,3]oxazines which at 300 K proved to be three-component tautomeric mixtures in CDCl₃ containing C-3 epimeric naphthoxazines (**B** and **C**) besides the open tautomer (**A**). The influence of aryl substituents at position 3 on the ring-chain tautomeric equilibria could be described by the Hammett equation. Study of the influence of aryl substituents at position 1 is still in progress.

2880

4. Experimental

¹H NMR spectra (400 MHz) were recorded at 300 K. Chemical shifts are given in δ (ppm) relative to TMS (CDCl₃) as internal standard. For the equilibria to be established in tautomeric compounds,² the samples were dissolved in CDCl₃ and the solutions were allowed to stand at ambient temperature for 1 day before the ¹H NMR spectra were run. The number of scans was usually 32.

4.1. General method for the synthesis of $1-(\alpha-amino-Y-substituted-benzyl)-2-naphthols (3a-f)$

To a solution of 2-naphthol (1, 14.42 g, 0.1 mol) in absolute MeOH (50 mL) was added the appropriate aromatic aldehyde (0.2 mol; for liquid aldehydes, a freshly distilled sample was used) and 25% methanolic ammonia solution (20 mL). The mixture was left to stand at ambient temperature for 2 days, during which a crystalline product (2a-f) separated out. The crystals were filtered off and washed with cool MeOH (2×20 mL), dried and suspended in 20% HCl (200 mL). The mixture was stirred and refluxed for 3 h, and the crystalline hydrochloride of 3a-f that separated out was filtered off and washed with EtOAc $(2\times 25 \text{ mL})$. The hydrochloride was suspended in H₂O (30 mL), and the mixture was treated with conc. NH₄OH (30 mL) and extracted with EtOAc (3×50 mL). After drying (Na_2SO_4) and evaporation, crystalline 3a-f was obtained, which was recrystallized from *i*Pr₂O.

4.1.1. Compound 3a. Beige crystals. Yield: 16.76 g (57%), mp 111–113°C. ¹H NMR (CDCl₃) δ 6.27 (s, 1H, NCH(Ar)NPh), 7.16 (d, 1H, J=9.0 Hz, Nph-H3), 7.27 (t, 1H, J=7.0 Hz, Nph-H6), 7.40 (t, 1H, J=7.0 Hz, Nph-H7), 7.40 (t, 1H, J=8.0 Hz, Ar), 7.70 (d, 1H, J=9.0 Hz, Nph-H8), 7.71–7.76 (m, 2H, Nph-H4, Nph-H5), 7.77 (d, 1H, J=8.0 Hz, Ar), 8.10 (d, 1H, J=8.0 Hz, Ar), 8.38 (s, 1H, Ar), ¹³C NMR (CDCl₃) δ 55.2, 114.5, 121.3, 121.5, 122.9, 123.6, 123.8, 127.9, 129.0, 129.9, 131.0, 131.2, 132.1, 134.5, 144.8, 148.9, 157.2. Anal. Calcd for C₁₇H₁₄N₂O₃: C, 69.38; H, 4.79; N, 9.52. Found: C, 69.51; H, 4.75; N, 9.64. IR ν_{max} 3361, 1521, 1347, 730 cm⁻¹.

4.1.2. Compound 3b. White crystals. Yield: 15.42 g (47%), mp 118–120°C. ¹H NMR (CDCl₃) δ 6.10 (s, 1H, NCH(Ar)NPh), 7.14–7.17 (m, 2H, Nph-H3, Ar), 7.25 (t, 1H, *J*=8.5 Hz, Nph-H6), 7.34–7.38 (m, 3H, Nph-H7, Ar), 7.62 (s, 1H, Ar), 7.66 (d, 1H, *J*=8.5 Hz, Nph-H8), 7.71 (d, 1H, *J*=8.5 Hz, Nph-H4), 7.73 (d, 1H, *J*=8.0 Hz, Nph-H5), ¹³C NMR (CDCl₃) δ 55.9, 115.1, 121.1, 121.5, 123.2, 123.5, 126.7, 126.8, 127.2, 129.5, 130.6, 131.1, 131.1, 131.7, 132.5, 145.3, 157.7. Anal. Calcd for C₁₇H₁₄BrNO: C, 62.21; H, 4.30; N, 4.27. Found: C, 62.39; H, 4.17; N, 4.35. IR ν_{max} 3353, 1436, 1284, 810 cm⁻¹.

4.1.3. Compound 3c. Light beige crystals. Yield: 15.03 g (53%), mp 109–111°C (lit.,¹⁵ mp 120°C). ¹H NMR (CDCl₃) δ 6.11 (s, 1H, NCH(Ar)NPh), 7.15 (d, 1H, *J*=9.0 Hz, Nph-H3), 7.23–7.28 (m, 3H, Nph-H6, Ar), 7.34 (t, 1H, *J*= 8.0 Hz, Nph-H7), 7.39 (d, 2H, *J*=8.5 Hz, Ar), 7.66 (d, 1H, *J*=8.5 Hz, Nph-H8), 7.71 (d, 1H, *J*=9.0 Hz, Nph-H4), 7.73 (d, 1H, *J*=8.0 Hz, Nph-H5), ¹³C NMR (CDCl₃) δ 55.8, 115.4, 121.0, 121.4, 123.0, 127.1, 129.2, 129.3, 129.3,

129.7, 130.4, 132.4, 134.4, 141.4, 157.5. IR $\nu_{\rm max}$ 3345, 1623, 1237, 829 cm⁻¹.

4.1.4. Compound 3d. Beige crystals. Yield: 13.94 g (56%), mp 116–118°C (lit.,⁹ mp 124–125°C). ¹H NMR (CDCl₃) δ 6.11 (s, 1H, NCH(Ar)NPh), 7.17 (d, 1H, *J*=9.0 Hz, Nph-H3), 7.20–7.24 (m, 2H, Nph-H6, Ar), 7.29 (d, 2H, *J*=7.5 Hz, Ar), 7.33 (t, 1H, *J*=7.5 Hz, Nph-H7), 7.44 (d, 2H, *J*=7.5 Hz, Ar), 7.67–7.71 (m, 3H, Nph-H4, Nph-H5, Nph-H8), ¹³C NMR (CDCl₃) δ 56.6, 115.9, 121.0, 121.7, 122.9, 127.1, 127.9, 128.4, 129.1, 129.3, 129.5, 130.8, 132.8, 143.2, 157.8. IR ν_{max} 3296, 1622, 1238, 770 cm⁻¹.

4.1.5. Compound 3e. Pale yellow crystals. Yield: 18.67 g (71%), mp 103–104°C (lit.,¹⁶ mp 109.5°C). ¹H NMR (CDCl₃) δ 2.27 (s, 3H, CH₃), 6.08 (s, 1H, NCH(Ar)NPh), 7.09 (d, 2H, *J*=8.0 Hz, Ar), 7.14 (d, 1H, *J*=9.0 Hz, Nph-H3), 7.21 (t, 1H, *J*=9.0 Hz, Nph-H6), 7.31–7.35 (m, 3H, Nph-H7, Ar), 7.69–7.73 (m, 3H, Nph-H4, Nph-H8, Nph-H5), ¹³C NMR (CDCl₃) δ 21.6, 56.1, 115.9, 121.0, 121.7, 122.9, 127.0, 127.6, 129.2, 129.2, 130.0, 130.2, 132.6, 138.2, 140.0, 157.6. IR ν_{max} 3347, 1468, 1235, 814 cm⁻¹.

4.1.6. Compound 3f. Beige crystals. Yield: 12.55 g (45%), mp 117–118°C. ¹H NMR (CDCl₃) δ 3.71 (s, 3H, OCH₃), 6.06 (s, 1H, NCH(Ar)NPh), 6.80 (d, 2H, J=8.5 Hz, Ar), 7.15 (d, 1H, J=9.0 Hz, Nph-H3), 7.22 (t, 1H, J=7.5 Hz, Nph-H6), 7.32 (t, 1H, J=7.5 Hz, Nph-H7), 7.35 (d, 2H, J=8.5 Hz, Ar), 7.65–7.72 (m, 3H, Nph-H4, Nph-H5, Nph-H8), ¹³C NMR (CDCl₃) δ 55.6, 55.7, 114.5, 115.7, 120.8, 121.5, 122.8, 126.8, 128.8, 128.9, 129.2, 130.0, 132.3, 135.0, 157.1, 159.5. Anal. Calcd for C₁₈H₁₇NO₂: C, 77.4; H, 6.13; N, 5.01. Found: C, 77.32; H, 6.23; N, 5.11. IR ν_{max} 3287, 1510, 1249, 824 cm⁻¹.

4.2. 1-Aminomethyl-2-naphthol (10)

Compound **10** was prepared from 2-naphthol (11.44 g, 0.08 mol) and hexamethylenetetramine (11.20 g, 0.08 mol) according to Ref. 14a.

4.2.1. Compound 10. Yellow crystals. Yield: 8.52 g (62%), mp 131–133°C (lit.,¹⁷ mp 135–138°C). ¹H NMR (DMSO) δ 4.30 (s, 2H, NCH₂NPh), 7.07 (d, 1H, *J*=9.0 Hz, Nph-H3), 7.24 (t, 1H, *J*=7.5 Hz, Nph-H6), 7.37 (t, 1H, *J*=7.5 Hz, Nph-H7), 7.68 (d, 1H, *J*=9.0 Hz, Nph-H4), 7.75 (d, 1H, *J*= 8.5 Hz, Nph-H5), 7.87 (d, 1H, *J*=8.5 Hz, Nph-H8), ¹³C NMR (DMSO) δ 45.0, 115.6, 119.5, 122.9, 123.0, 127.1, 129.0, 129.2, 129.5, 134.0, 156.1. IR ν_{max} 1268, 1238, 813, 741 cm⁻¹.

4.3. General method for the synthesis of 3-aryl- and 1,3-diaryl-2,3-dihydro-1*H*-naphth[1,2-*e*][1,3]oxazines (4–9 and 11)

To a solution of the appropriate amino naphthol (3a-f or 10, 1 mmol) in absolute MeOH (20 mL), an equivalent amount of aromatic aldehyde was added (for liquid aldehydes, a freshly distilled sample was used), and the mixture was left to stand at ambient temperature for 24 h. The crystal-line products were filtered off, washed with Et₂O and

Table 3. Physical and analytical data on naphth[1,2-e][1,3]oxazines 4-9 and 11

Compound	Mp (°C)	Yield (%)	Formula	M.W.	C% Found (calculated)	H% Found (calculated)	N% Found (calculated)
4a	$207 - 208^{a}$	78	C ₂₄ H ₁₇ N ₃ O ₅	427.41	67.38 (67.44)	4.02 (4.01)	9.81 (9.83)
4b	$173 - 175^{b}$	81	$C_{24}H_{17}BrN_2O_3$	461.31	62.51 (62.49)	3.70 (3.71)	6.06 (6.07)
4c	167–168 ^b	69	C24H17ClN2O3	416.86	69.12 (69.15)	4.12 (4.11)	6.72 (6.72)
4d	146–147 ^a	83	$C_{24}H_{18}N_2O_3$	382.41	75.43 (75.38)	4.75 (4.74)	7.33 (7.33)
4e	161-163 ^a	75	$C_{25}H_{20}N_2O_3$	396.44	75.61 (75.74)	5.09 (5.08)	7.08 (7.07)
4f	126-128 ^b	86	$C_{25}H_{20}N_2O_4$	412.44	72.68 (72.80)	4.89 (4.89)	6.78 (6.79)
4g	$201 - 202^{b}$	90	C ₂₆ H ₂₃ N ₃ O ₃	425.48	73.37 (73.40)	5.46 (5.45)	9.88 (9.88)
5a	193–195 ^b	72	C24H17BrN2O3	461.31	62.58 (62.49)	3.70 (3.71)	6.08 (6.07)
5b	123–125 ^b	67	C24H17Br2NO	495.21	58.30 (58.21)	6.45 (6.46)	2.84 (2.83)
5c	163-164 ^b	80	C24H17BrClNO	450.76	63.88 (63.95)	3.81 (3.80)	3.12 (3.11)
5d	132-134 ^a	75	C24H18BrNO	416.31	69.17 (69.24)	4.37 (4.36)	3.35 (3.36)
5e	$143 - 145^{a}$	82	C ₂₅ H ₂₀ BrNO	430.34	69.85 (69.78)	4.67 (4.68)	3.24 (3.25)
5f	$108 - 110^{a}$	85	C ₂₅ H ₂₀ BrNO ₂	446.34	67.17 (67.27)	4.51 (4.52)	3.13 (3.14)
5g	161-164 ^a	70	C ₂₆ H ₂₃ BrN ₂ O	459.38	67.88 (67.98)	5.06 (5.05)	3.11 (6.10)
6a	$181 - 182^{b}$	81	$C_{24}H_{17}CIN_2O_3$	416.86	69.09 (69.15)	4.11 (4.11)	6.73 (6.72)
6b	$147 - 148^{a}$	75	C ₂₄ H ₁₇ BrClNO	450.76	64.02 (63.95)	3.81 (3.80)	3.11 (3.11)
6c	155-156 ^{b,c}	78	C ₂₄ H ₁₇ Cl ₂ NO	406.31	70.93 (70.95)	4.23 (4.22)	3.46 (3.45)
6d	154–156 ^a	85	C ₂₄ H ₁₈ CINO	371.86	77.48 (77.52)	4.89 (4.88)	3.78 (3.77)
6e	163–165 ^a	73	$C_{25}H_{20}CINO$	385.89	77.78 (77.81)	5.21 (5.22)	3.64 (3.63)
6f	163-164 ^b	86	$C_{25}H_{20}CINO_2$	401.89	74.69 (74.72)	5.01 (5.02)	3.48 (3.49)
6g	177–178 ^b	88	C ₂₆ H ₂₃ ClN ₂ O	414.93	75.31 (75.26)	5.58 (5.59)	3.76 (6.75)
7a	176–178 ^{a,d}	74	$C_{24}H_{18}N_2O_3$	382.41	75.42 (75.38)	4.74 (4.74)	7.34 (7.33)
7b	153–155 ^a	81	C ₂₄ H ₁₈ BrNO	416.31	69.33 (69.24)	4.36 (4.36)	3.35 (3.36)
7c	171–173 ^{b,e}	86	C ₂₄ H ₁₈ ClNO	371.86	77.45 (77.52)	4.87 (4.88)	3.76 (3.77)
7d	146-148 ^{a,f}	90	$C_{24}H_{19}NO$	337.42	85.39 (85.43)	5.67 (5.68)	4.15 (4.15)
7e	155-157 ^{a,g}	77	$C_{25}H_{21}NO$	351.44	85.51 (85.44)	6.03 (6.02)	3.98 (3.99)
7f	143-146 ^{a,h}	81	$C_{25}H_{21}NO_2$	367.44	81.84 (81.72)	5.75 (5.76)	3.82 (3.81)
7g	225-227 ^{a,i}	78	$C_{26}H_{24}N_2O$	380.48	82.19 (82.07)	6.37 (6.36)	7.35 (7.36)
8a	$181 - 183^{b}$	75	$C_{25}H_{20}N_{2}O_{3}$	396.44	75.69 (75.74)	5.09 (5.08)	7.07 (7.07)
8b	116-117 ^b	92	C ₂₅ H ₂₀ BrNO	430.34	69.71 (69.78)	5.68 (4.68)	3.26 (3.25)
8c	137-138 ^b	83	C ₂₅ H ₂₀ ClNO	385.89	77.92 (77.81)	5.21 (5.22)	3.64 (3.63)
8d	131-133 ^b	89	$C_{25}H_{21}NO$	351.44	85.39 (85.44)	6.02 (6.02)	3.98 (3.99)
8e	$148 - 149^{b,j}$	77	C ₂₆ H ₂₃ NO	365.47	85.52 (85.45)	6.33 (6.34)	3.83 (3.83)
8f	$128 - 132^{b}$	85	C26H23NO2	381.47	82.02 (81.86)	6.07 (6.08)	3.68 (3.67)
8g	$197 - 198^{b}$	76	C27H26N2O	394.51	82.11 (82.20)	6.65 (6.64)	7.08 (7.10)
9a	$157 - 159^{b}$	84	$C_{25}H_{20}N_2O_4$	412.44	72.75 (72.80)	4.88 (4.89)	6.78 (6.79)
9b	$177 - 178^{b}$	77	$C_{25}H_{20}BrNO_{2}$	446.34	67.36 (67.27)	4.52 (4.52)	3.13 (3.14)
9c	$180 - 182^{a}$	84	$C_{25}H_{20}CINO_2$	401.89	74.89 (74.72)	5.01 (5.02)	3.50 (3.49)
9d	156–159 ^a	93	C ₂₅ H ₂₁ NO ₂	367.44	81.68 (81.72)	5.76 (5.76)	3.82 (3.81)
9e	$177 - 178^{a}$	88	C ₂₆ H ₂₃ NO ₂	381.47	81.71 (81.86)	6.07 (6.08)	3.66 (3.67)
9f	$182 - 184^{a,k}$	76	C ₂₆ H ₂₃ NO ₃	397.47	78.66 (78.57)	5.84 (5.83)	3.52 (3.52)
9g	177–179 ^a	79	C ₂₇ H ₂₆ N ₂ O ₂	410.51	79.11 (79.00)	6.39 (6.38)	6.83 (6.82)
11a	$161 - 162^{b}$	72	$C_{19}H_{14}N_2O_3$	306.32	70.65 (70.58)	4.62 (4.61)	9.16 (9.15)
11b	154–156 ^b	83	C ₁₀ H ₁₄ BrNO	340.21	63.44 (63.55)	4.15 (4.15)	4.13 (4.12)
11c	155–157 ^a	78	C ₁₈ H ₁₄ CINO	295.76	72.97 (73.10)	4.76 (4.77)	4.74 (4.74)
11d	$109 - 111^{a}$	85	C18H15NO	261.32	82.81 (82.73)	5.78 (5.79)	5.36 (5.36)
11e	$125 - 126^{a}$	75	$C_{10}H_{17}NO$	275.35	82.72 (82.88)	6.23 (6.22)	5.08 (5.09)
11f	$146 - 147^{a}$	80	$C_{10}H_{17}NO_{2}$	291.34	78.48 (78.33)	5.88 (5.88)	4.82 (4.81)
11g	$152 - 154^{a}$	77	$C_{20}H_{20}N_{2}O$	304 39	78.88 (78.92)	6.63 (6.62)	9.21 (9.20)
			-2011201120	20.07			

^a Recrystallized from *i*Pr₂O.

^a Recrystallized from iPr_2O . ^b Recrystallized from iPr_2O -EtOAc. ^c Lit., ¹⁵ mp 150°C. ^d Lit., ^{13a} mp 174–175°C. ^e Lit., ^{13a} mp 144–145°C. ^g Lit., ¹⁸ mp 169°C. ^h Lit., ¹⁸ mp 95°C. ⁱ Lit., ¹⁶ mp 192–193°C. ^j Lit., ¹⁶ mp 149°C. ^k Lit., ¹⁶ mp 181°C.

recrystallized. All of the recrystallized new compounds (4a-g, 5a-g, 6a, 6b, 6d-g, 7b, 8a-d, 8f, 8g, 9a-e, 9g, 11a-g) gave satisfactory data on elemental analysis (C, H, $N\pm0.3\%$). The physical and analytical data for compounds 4–9 and 11 are listed in Table 3.

With regard to the similarities in the ¹H NMR data, full spectra are described only for three representatives of the prepared compounds (6a, 9g and 11f). In a consequence of the very low relative concentrations and the extensive signal overlaps in the aromatic region, a full NMR characterization of the minor ring closed tautomers C was not possible. The ¹H NMR chemical shifts of the characteristic O-CHAr-N and N=CHAr protons of each tautomer and the characteristic IR wavenumbers for compounds 4-9 and 11 are given in Table 4.

Compound	$\delta N = CH(A)$	$\delta N-CH-O(\mathbf{B})$	$\delta N-CH-O(C)$	$\nu_{\rm max.}~({\rm cm}^{-1})$		
la	8.80(s)	5.75(s)	6.04(s)	3854, 1598, 1343, 1233		
łb	8.61(s)	5.68(s)	5.96(d)	3332, 1527, 1352, 1238		
łc	8.64(s)	5.69(s)	5.99(s)	3332, 1527, 1345, 1234		
ld	8.68(s)	5.72(s)	6.03(s)	3332, 1525, 1349, 1233		
le	8.62(s)	5.70(s)	6.02(s)	1525, 1468, 1347, 1232		
lf	8.55(s)	5.66(s)	5.98(s)	3338, 1526, 1348, 1232		
1g	8.43(s)	5.66(s)	=	1601, 1344, 1181, 741		
5a	8.32(s)	5.69(d)	5.91(d)	1518, 1339, 1232, 753		
5b	8 55(8)	5 62(8)	5 87(d)	3322, 1234, 989, 774		
5c	8.57(s)	5.63(s)	5.88(d)	33316, 1233, 986, 957		
5d	8 61(s)	5 65(d)	5 91(d)	3317, 1467, 1233, 704		
Se	8 55(s)	5 62(s)	5 90(d)	3321 1238 986 931		
Sf Sf	8 50(s)	5 60(s)	5.89(s)	1515 1251 1234 985		
59	8 39(s)	5 60(s)	-	3308, 1365, 1233, 955		
-8 โล	873(8)	5 68(s)	5 91(d)	3320 1519 1339 814		
մհ	8 56(s)	5 61(s)	5 89(d)	3307, 1233, 990, 825		
ic .	8 57(s)	5 60(s)	5 90(d)	3320 1233 984 745		
5e 5d	8.60(s)	5.66(s)	5.92(d)	3320 1236 825 747		
ie ie	8 51(s)	5.57(s)	5.88(d)	3314 1233 985 745		
se Sf	8 50(s)	5.60(s)	5.00(u) 5.91(s)	1515 1231 930 749		
50 50	8 39(s)	5 59(s)	-	3850 1597 1367 1182		
75 79	8.73(s)	5.73(s)	5.94(s)	3307 1518 1340 1231		
7h	8.55(s)	5.63(s)	5 91(d)	3308 1229 924 750		
70 7e	8.55(s) 8.62(s)	5.65(s)	5.91(d)	3320 1235 984 750		
7d	8.62(s) 8.63(s)	5.05(s) 5.71(s)	5.95(d) 5.97(s)	1236 932 743 698		
70	8.56(s)	5.65(s)	5.97(3) 5.94(d)	3320 1237 834 749		
7C 7f	8.53(s)	5.65(s)	5.94(d)	3320, 1512, 1169, 983		
7σ	8.43(s)	5.65(d)		1602 1455 1366 1181		
' 5 Ra	8 65(s)	5.05(d) 5.72(s)	5 88(s)	3311 1521 1341 1233		
Rh	8.55(s)	5.72(s) 5.67(s)	5.00(3) 5.80(d)	3317 1232 080 780		
Re	8.53(s)	5.67(s)	5.88(d)	3850 1231 987 807		
R4	8.54(s)	5.68(s)	5.00(a)	1233 985 808 746		
Sa Sa	8.57(s)	5.66(s)	5.00(s)	3302 1233 987 746		
SC Sf	8.52(s) 8.51(s)	5.66(s)	5.90(s) 5.90(s)	1450 1248 1229 903		
a Ra	8 30(s)	5.63(s)	5.56(3)	1604 1365 1182 812		
78)a	8.59(s) 8.69(s)	5.05(s) 5.72(s)	- 5 87(s)	3202 1510 1342 1220		
7a)h	8.09(s) 8.50(c)	5.72(8) 5.63(s)	5.87(8) 5.86(d)	3232, 1510, 1542, 1223		
	8.50(s) 8.54(s)	5.65(s) 5.64(s)	5.80(d) 5.87(d)	3316 1511 1247, 1233		
)d	8.55(s)	5.68(s)	5.87(d)	3850 1505 1454 942		
)a	8.55(s) 8.51(s)	5.65(s)	5.88(s)	3320 1510 1170 747		
)f	8.51(s) 8.50(s)	5.65(s)	5.80(s)	1607 1511 1253 831		
)a	8.50(s) 8.40(s)	5.63(s)	5.89(8)	1605 1500 1251 811		
'g 1a	8.40(s) 8.58(c)	5.02(8) 5.03(d)	_	3314 1510 1338 1224		
11a 11h	8.43(s)	5.84(s)	_	3308 1245 1221 911		
10	0.43(8) 8.46(s)	5.04(8) 5.85(s)	—	3300, 1243, 1231, 811		
114	0.40(8) 8 50(c)	5.80(s)	—	3233, 1223, 931, 010 3248, 1227, 740, 605		
10	0.50(8) 8 47(c)	5.09(8) 5.87(s)	—	1225 006 010 211		
110	0.47(8) 8 30(c)	5.07(8) 5.83(s)	—	1223, 990, 910, 811		
11 1 a	0.39(8) 8 20(a)	5.05(8) 5.81(a)	—	J200, 1240, 1227, 815 1601 1268 1191 915		
12	0.27(8)	2.01181	-			

 Table 4. NMR and IR spectroscopical data on naphth[1,2-e][1,3]oxazines 4–9 and 11

4.4. ¹H NMR spectroscopic data on 6a, 9g and 11f in CDCl₃

The protons of the open form (**A**) are numbered according to the corresponding protons of the naphth[1,2-*e*][1,3]oxazine ring form (**B**, **C**) (δ in ppm, in brackets the multiplicity, couplings in Hz and assignment, respectively).

4.4.1. Compound 6aB. ¹H NMR (CDCl₃) δ 5.63 (s, 1H, NC*H*(Ar)NPh), 5.68 (s, 1H, NC*H*(Ar)O), 7.24 (d, 1H, *J*= 9.0 Hz, H5), 7.27–7.32 (m, 4H, Ar), 7.32–7.35 (m, 3H, H7, H8, H9), 7.78 (d, 2H, *J*=9.0 Hz, Ar), 7.79–7.83 (m, 2H, H6, H10), ¹³C NMR (CDCl₃) δ 53.6, 81.6, 114.6, 119.4, 123.1, 123.8, 124.1, 127.3, 127.8, 129.0, 129.3, 129.5, 130.1, 131.1, 131.2, 131.4, 141.2, 146.1, 148.4, 152.5.

4.4.2. Compound 9gA. ¹Η NMR (CDCl₃) δ 3.03 (s, 6H,

p-N(C*H*₃)2), 3.73 (s, 3H, *p*-OC*H*₃), 6.31 (s, 1H, NC*H* (Ar)NPh), 6.68 (d, 2H, *J*=8.5 Hz, Ar), 6.78 (d, 2H, *J*=8.5 Hz, Ar), 7.22 (d, 1H, *J*=9.0 Hz, Nph-H3), 7.23–7.39 (m, 3H, Ar, Nph-H6), 7.37 (t, 1H, *J*=7.5 Hz, Nph-H7), 7.63 (d, 2H, *J*=8.5 Hz, Ar), 7.72 (d, 1H, *J*=9.0 Hz, Nph-H4), 7.74 (d, 1H, *J*=8.0 Hz, Nph-H5), 7.83 (d, 1H, *J*=8.5 Hz, Nph-H8), 8.40 (s, 1H, C*H*=N), ¹³C NMR (CDCl₃) δ 40.6, 55.7, 74.3, 112.1, 114.6, 120.8, 117.5, 122.2, 122.8, 123.0, 127.6, 129.2, 129.3, 129.4, 129.9, 131.1, 132.5, 134.5, 153.5, 156.3, 159.6, 161.7.

4.4.3. Compound 11fA. ¹H NMR (CDCl₃) δ 3.86 (s, 3H, OCH₃), 5.36 (s, 2H, H1), 6.96 (d, 2H, *J*=7.0 Hz, Ar), 7.15 (d, 1H, *J*=8.5 Hz, Nph-H3), 7.31 (t, 1H, *J*=8.0 Hz, Nph-H6), 7.48 (t, 1H, *J*=8.0 Hz, Nph-H7), 7.68 (d, 1H, *J*=8.5 Hz, Nph-H4), 7.71 (d, 2H, *J*=7.0 Hz, Ar), 7.77 (d, 1H, *J*=8.5 Hz, Nph-H5), 7.79 (d, 1H, *J*=9.0 Hz, Nph-H8), 8.39

(s, 1H, CH=N), ¹³C NMR (CDCl₃) δ 55.9, 60.3, 112.9, 114.7, 120.5, 121.4, 121.5, 123.1, 126.9, 128.0, 128.9, 129.1, 130.8, 132.2, 155.6, 162.3, 163.0.

4.4.4. Compound 11fB. ¹H NMR (CDCl₃) δ 3.82 (s, 3H, OCH₃), 4.37 (d, 1H, *J*=17.0 Hz, H1), 4.53 (d, 1H, *J*=17.0 Hz, H1), 5.83 (s, 1H, NCH(Ar)NPh), 6.94 (d, 2H, *J*=7.0 Hz, Ar), 7.14 (d, 1H, *J*=9.0 Hz, H5), 7.35 (t, 1H, *J*=8.0 Hz, H8), 7.47 (t, 1H, *J*=8.0 Hz, H9), 7.57 (d, 2H, *J*=8.0 Hz, Ar), 7.64 (d, 1H, *J*=9.0 Hz, H10), 7.67 (d, 1H, *J*=9.0 Hz, H6), 7.77 (d, 1H, *J*=8.5 Hz, H7), ¹³C NMR (CDCl₃) δ 42.7, 55.7, 87.3, 114.0, 114.3, 119.9, 121.6, 121.7, 123.9, 126.9, 128.0, 129.3, 129.4, 131.6, 131.9, 152.7, 160.2.

Acknowledgements

The author's thanks are due to the Hungarian Research Foundation (OTKA No. T034901 and T030452) for financial support.

References

- (a) Valters, R. E.; Flitsch, W. *Ring-chain Tautomerism*; Plenum: New York, 1985. (b) Valters, R. E.; Fülöp, F.; Korbonits, D. *Adv. Heterocycl. Chem.* **1996**, *66*, 1–71.
- (a) Alva Astudillo, M. E.; Chokotho, N. C. J.; Jarvis, T. C.; Johnson, C. D.; Lewis, C.; McDonell, P. D. *Tetrahedron* 1985, 41, 5919–5928. (b) Fülöp, F.; Pihlaja, K.; Mattinen, J.; Bernáth, G. J. Org. Chem. 1987, 52, 3821–3825. (c) Fülöp, F.; Pihlaja, K.; Neuvonen, K.; Bernáth, G.; Argay, G.; Kálmán, A. J. Org. Chem. 1993, 58, 1967–1969. (d) Szakonyi, Z.; Fülöp, F.; Bernáth, G.; Evanics, F.; Riddell, F. G. *Tetrahedron* 1998, 54, 1013–1020. (e) Martinek, T.; Lázár, L.; Fülöp, F.; Riddell, F. G. *Tetrahedron* 1998, 54, 12887–12896. (f) Star, A.; Goldberg, I.; Fuchs, B. Angew. Chem. Int. Ed. 2000, 39, 2685–2689. (g) Neuvonen, K.; Fülöp, F.; Neuvonen, H.; Koch, A.; Kleinpeter, E.; Pihlaja, K. J. Org. Chem. 2001, 66, 4132–4140.
- (a) Blanchet, J.; Bonin, M.; Micouin, L.; Husson, H.-P. J. Org. Chem. 2000, 65, 6423–6426. (b) Brózda, D.; Koroniak, L.; Rozwadowska, M. D. Tetrahedron: Asymmetry 2000, 11, 3017–3025. (c) Agami, C.; Couty, F.; Evano, G. Tetrahedron: Asymmetry 2002, 13, 297–302.
- (a) Meyers, A. I.; Downing, S. V.; Weiser, M. J. J. Org. Chem.
 2001, 66, 1413–1419. (b) Amat, M.; Cantó, M.; Llor, N.; Escolano, C.; Molins, E.; Espinosa, E.; Bosch, J. J. Org. Chem.
 2002, 67, 5343–5351. (c) Amat, M.; Bosch, J.; Hidalgo, J.; Canto, M.; Perez, M.; Llor, N.; Molins, E.; Miravitlles, C.; Orozco, M.; Luque, J. J. Org. Chem. 2000, 65, 3074–3084.
 (d) Amat, M.; Canto, M.; Llor, N.; Bosch, J. Chem. Commun.

2002, 526–527. (e) Amat, M.; Canto, M.; Llor, N.; Ponzo, V.; Perez, M.; Bosch, J. *Angew. Chem. Int. Ed.* **2002**, *41*, 335–338.

- (a) Singh, K.; Singh, J.; Singh, H. Tetrahedron 1989, 45, 3967–3974. (b) Singh, K.; Deb, P. K. Tetrahedron Lett. 2000, 41, 4977–4980. (c) Singh, K.; Deb, P. K.; Venugopalan, P. Tetrahedron 2001, 57, 7939–7949. (d) Singh, K.; Deb, P. K.; Behal, S. Heterocycles 2001, 55, 1937–1942.
- Fülöp, F.; Lázár, L.; Bernáth, G.; Sillanpää, R.; Pihlaja, K. *Tetrahedron* 1993, 49, 2115–2122.
- Milman, B. L.; Potekhin, A. A. Khim. Geterotsikl. Soedin. 1973, 902–907.
- Göblyös, A.; Lázár, L.; Evanics, F.; Fülöp, F. *Heterocycles* 1999, 51, 2431–2438.
- 9. Betti, M. Org. Synth. Coll. 1941, 1, 381-383.
- (a) Grumbach, H.-J.; Arend, M.; Risch, N. Synthesis 1996, 883–887.
 (b) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Tymoshenko, D. O.; Belyakov, S. A.; Ghiviriga, I.; Steel, P. J. J. Org. Chem. 1999, 64, 6071–6075.
 (c) Saidi, M. R.; Azizi, N.; Naimi-Jamal, M. R. Tetrahedron Lett. 2001, 42, 8111–8113.
 (d) Hwang, D.-R.; Uang, B.-J. Org. Lett. 2002, 4, 463–466.
- (a) Cardellicchio, C.; Ciccarella, G.; Naso, F.; Perna, F.; Tortorella, P. *Tetrahedron* 1999, 55, 14685–14692.
 (b) Palmieri, G. *Tetrahedron: Asymmetry* 2000, 11, 3361–3373.
 (c) Lu, J.; Xu, X.; Wang, C.; He, J.; Hu, Y.; Hu, H. *Tetrahedron Lett.* 2002, 43, 8367–8369.
- (a) Cardellicchio, C.; Ciccarella, G.; Naso, F.; Schingaro, E.; Scordari, F. *Tetrahedron: Asymmetry* **1998**, *9*, 3667–3675.
 (b) Boga, C.; Di Martino, E.; Forlani, L. J. Chem. Res. (S) **2001**, 43–45.
 (c) Liu, D.-X.; Zhang, L.-C.; Wang, Q.; Da, C.-S.; Xin, Z.-Q.; Wang, R.; Choi, M. C. K.; Chan, A. S. C. *Org. Lett.* **2001**, *3*, 2733–2735.
 (d) Cimarelli, C.; Mazzanti, A.; Palmieri, G.; Volpini, E. J. Org. Chem. **2001**, *66*, 4759–4765.
 (e) Gong, Y.; Kato, K. *Tetrahedron: Asymmetry* **2001**, *12*, 2121–2127.
 (f) Wang, Y.; Li, X.; Ding, K. *Tetrahedron: Asymmetry* **2002**, *13*, 1291–1297.
- (a) Smith, H. E.; Cooper, N. E. J. Org. Chem. 1970, 35, 2212–2215. (b) Möhrle, H.; Miller, C.; Wendisch, D. Chem. Ber. 1974, 107, 2675–2682.
- 14. (a) Duff, J. C.; Bills, E. J. J. Chem. Soc. 1934, 1305–1308.
 (b) Deana, A. A.; Stokker, G. E.; Schultz, E. M.; Smith, R. L.; Cragoe, Jr., E. J.; Russo, H. F.; Watson, L. S. J. Med. Chem. 1983, 26, 580–585.
- 15. Ray, F. E.; Moomaw, W. A. J. Am. Chem. Soc. 1933, 55, 749–752.
- Kharasch, M. S.; Howard, L. B. J. Am. Chem. Soc. 1934, 56, 1370–1373.
- 17. Dey, B. B.; Rajagopalan, S. Arch. Pharm. **1939**, 277, 359–374.
- Desai, N. C.; Shukla, H. K.; Langalia, N. A.; Thaker, K. A. J. Indian Chem. Soc. 1984, 61, 711–713.